
Easing the facilitation and creation of scalable global internet

based applications

Omar Elamri

The purpose of this study is to help developers rapidly create scalable applications on the global scale.
Current research shows that today’s methods are slow and inefficient—especially for mobile devices
which are on the rise. If developers want their applications to be accessible to more users, current
methods will have to change. This project streamlines the development of applications—in essence
creating a one stop solution for all a developer’s needs. Both the backend, frontend and database
solutions are abstracted to a singular framework. This is achieved by creating a unified framework, load
balancing databases and servers, and finally using serialization methods that allow for faster and more
efficient data transfer.

Keywords: backend, frontend, React, NoSQL, nonrelational, sharding, load-balancing

Mobile devices are becoming more abundant
which in turn increases the reliance on cellular
networks (that have less reliable connectivity than
broadband). In order to serve these new needs,
internet-based applications need to be well-versed
in complicated compression, parallel processing,
and sharding of databases over a global network
(Mishra, 2020).

Applications must be able to interact with
both their backend server and frontend application
with ease. Serialization methods that efficiently
transport data between the two all have their
drawbacks. In addition, the new social media-based
age requires all data to be transferred in real-time.
Transmitting data from different corners of the
world in real-time is a challenge. Also, developing
requests and responses and processing them on both
sides can be difficult at times. A unified
programming approach for both the frontend and
backend is easier than current solutions and will be
utilized to aid the developer’s linkage between the
two.

This research seeks to create a way for
application developers to more easily create
applications that meet the new standards required
by less stable connections. It will be a unified
approach to tackle all these problems in a single
framework. Unlike the other frameworks, this one
will not merely focus on either the backend or

frontend, but both. It will also support running on
an independent infrastructure or a current cloud
virtual machine provider. The research dedicated to
developing this new framework could potentially
have major implications. For starters, it will make
application development easier, so there will be an
influx of indie app developers who no longer need
to worry about the specifics and be free to unleash
their creativity. In turn, this could make the internet
more accessible for all and reduce society’s reliance
on megacorporations for our internet access.

The focus of this study is to determine how
to best serve the needs of up and coming software
developers so that they can build reliable,
global-scale, and real-time applications. In addition,
the study will delve into developing such a
framework so that the above is possible and easily
facilitated. Applications are becoming harder to
develop day by day—and with each of the new
standards and demands of the modern world—it’s
becoming increasingly difficult for developers to
keep up. The results of this study and its framework
could potentially streamline application
development for all—democratizing and
demystifying the process while at the same time
providing more of a choice for the world to make a
greater number of applications by newer
developers.

Methods

The cornerstone of this project, the unified
framework, was created by providing a wrapper
around two individual frameworks. For the
backend, it uses a custom WebSocket handler
previously created by the lead researcher. The
frontend uses a React sample project. The
framework listens to backend calls such as database
requests and updates, whereas the view logic is
implemented on the React side. Additionally, the
framework provides the ability for the developer to
designate exactly which code runs locally or on the
server. The combination is implemented by starting
out from a React project. The framework seeks out
the individual snippets and compiles them into a
backend executable.

Secondly, a real-time database that is
non-schema based (NoSQL) was created. This
database provides structure alongside a sharding
system that allows for real-time communication
between shards. (Note: NoSQL databases typically
imply a key-value pairing system.) Current
implementations such as MongoDB exist; however,
they are too large (and made for commercial use) to
be viable for this project. Thus, it’s imperative to
create a new database. Databases need to follow the
ACID guidelines—in other words, databases need
to be atomic, consistent, isolated, and durable.
Atomicity requires that a single transaction either
results in a change or not at all. If the connection is
lost in the middle of a delete transaction, it could
result in a partial deletion. This makes the record in
a state of limbo. Isolation requires that one database
transaction results in one change. This may seem
simple, but an update transaction consists of two
individual transactions: an addition, and a
subsequent deletion. If two update transactions
occur at the same time, the ordering of the four
transactions could be out of order and may result in
a net deletion—not isolated at all. In addition, a
strong sharding system for the databases was
implemented. In a global application, data is shared
across the internet—it’s infeasible to have a copy of
all the data on each database; therefore, data needs
to be spread across the shards. This project created
an algorithm that efficiently allocates data between
shards. Also, the communication between the shards
needs to be secure. For the interim, a simple HTTPS
over TLS protocol suffices for this communication;
however, it’s uncertain whether or not this is fast

enough for the vast loads of data.

Results

The unified framework was developed in
actuality by simply creating a new file in the
frontend source code. The file could have any name,
but as a default, it creates catalyst.js or catalyst.ts in
a TypeScript project. In this file, the developer
writes functions that can be referenced in the
frontend code as seen in Fig. 1 and Fig. 2.
unifiedapproach.testfunction =

(param1, param2) => {

console.log("testfunction")

}

Figure 1. Function creation for use in the frontend
<p

onclick={unifiedapproach.testfunctio

n(1, 2)}></p>

Figure 2. Referencing function in frontend code

On compile time, the framework splits the two into
its constituent parts: the frontend and the backend.
It changes package.json to run the framework’s
executable when running npm’s build script. Firstly,
in a TypeScript project, the framework tells tsc (the
TypeScript compiler) to ignore catalyst.ts. (In a
JavaScript project, the framework simply moves the
file to another directory.) Secondly, a “new”
catalyst.ts is created, but only with functions that
connect to the WebSocket connector. This is done
by extracting the functions’ parameter and return
type using regular expressions (Fig. 3).
var STRIP_COMMENTS =

/((\/\/.*$)|(\/*[\s\S]*?*\/))/mg;

var ARGUMENT_NAMES = /([^\s,]+)/g;

function getParamNames(func) { var

fnStr =

func.toString().replace(STRIP_COMMEN

TS, ''); var result =

fnStr.slice(fnStr.indexOf('(')+1,

fnStr.indexOf(')')).match(ARGUMENT_N

AMES); if(result === null) result =

[]; return result; }

Figure 3. Extraction of argument names (Allen,
2020)

This new catalyst.ts will be compiled alongside the
rest of the frontend in addition to boilerplate code
that facilitates the WebSocket connection with the
backend. Thirdly, the original catalyst.ts is
transferred/copied to another directory which will
serve as the backend of the application. Boilerplate
code such as creating the WebSocket listener is
added, and a working backend is created. From a
single codebase, both the frontend and backend are
created.

The real-time database commits changes to a
ledger and synchronously commits them to each
constituent document file (Fig. 4). Firstly, a change
is made by calling any of the built-in document
altering functions. Once they’re called, the changes
will be serialized into a format that fits into an
array—which is stored in memory by ledger.ts.
Before the change is added to an array, ledger.ts
checks for any conflicts with previously committed
changes. If there is a conflict, it throws an error to
be handled by the caller of the altering functions.
This array acts as a queue—where ledger.ts
incrementally dequeues each change onto a file
(ledger.txt). The usage of an intermediate file is to
ensure changes are committed (once the executable
goes back online) even when execution is halted.
The main database engine then reads from ledger.txt
and makes the changes synchronously to the
database. This ensures that the ACID guidelines are
followed. Document altering methods are available,
but in the interim are limited to modifying
document properties. These include insert and edit.
In addition, complex data structures such as arrays
are not supported natively (however, a client can
easily serialize one using a string).

Figure 4. Shows the process in which a change is
made on the database.

Discussion

The unified framework, while useful, does have
its limitations. Firstly, external libraries are

sparingly supported. This is due to the fact that code
is simply copied from one file to another. Unlike the
code itself, dependencies aren’t added to the newly
created backend. This could be mitigated by
extracting which libraries are used from the import
declarations in addition to the dependencies stated
in the frontend’s package.json. This would be the
primary facet of a future project due to how
important it is for libraries to be supported—this
framework would be functionally useless without
them. Another limitation is type checking. While
catalyst supports TypeScript, it does not inference
return types and parameter types. This could be
mitigated by either using a similar regex approach
to the extraction of argument names (seen in Fig. 3),
or attaching to the TypeScript engine. The final
limitation is the lack of automated deployment. It’s
currently up to the developer to create the SSL
certificates for both the production and development
servers along with the configuration of how the
server is handled by the operating system. For the
latter part of this limitation, pm2 (keymetrics.io,
2014) is a suggested library to run the backend
server. This method works for developers running
on their own hardware, but it doesn’t provide tight
integration with cloud platforms such as GCP/AWS.
These platforms have built in load balancing that
can be utilized.

For the database, the clear limitation is the lack
of document altering methods. While this database
has two crucial methods, MongoDB has over thirty
(Mongo, 2021). However, this is also a non
limitation as the lack of methods lessens the
resources required to run the database—making it
more efficient. Arguably, this efficiency is minimal
compared to the infeasibility of using a database
system with so few methods; hence, a future project
will have to create more.

All in all, while this project isn’t realistic for
actual usage, it serves as a case of proof for the
feasibility of a future project. A unified framework
and tightly integrated database can work in
conjunction with each other, but more development
and feature compatibility is needed for it to be
viable.

References

Mishra, S. K., Sahoo, B., & Parida, P. P. (2020). Load
balancing in cloud computing: A big picture. Journal of
King Saud University - Computer and Information
Sciences, 32(2), 149-158. doi:10.1016/j.jksuci.2018.01.003

Allen, J. (2012, March 29). How to get function parameter
names/values dynamically? StackOverflow. Retrieved May
10, 2021, from
https://stackoverflow.com/questions/1007981/how-to-get-f
unction-parameter-names-values-dynamically

keymetrics.io. (2014). ADVANCED, PRODUCTION
PROCESS MANAGER FOR NODE.JS. PM2 - Home.
Retrieved May 17, 2021, from https://pm2.keymetrics.io.

“Mongo Shell Methods” Mongo Shell Methods - MongoDB
Manual, docs.mongodb.com/manual/reference/method/.

https://stackoverflow.com/questions/1007981/how-to-get-function-parameter-names-values-dynamically
https://stackoverflow.com/questions/1007981/how-to-get-function-parameter-names-values-dynamically

