
Training Rabbits with Reinforcement Learning

Alexander Zhang Zhaomeng Chen Krishi Sabarwal Omar Elamri

Abstract

We used reinforcement learning algorithms to train mod-
els that play a simple 2D grid game. We achieved a high
win rate of 87% using the deep Q-network algorithm, a
convolutional neural network, and dense rewards that en-
courage beneficial behaviors while penalizing risky actions.
We found that environments with highly random rewards
are challenging for the methods that we tried and a well-
designed reward function is essential for good performance.

1. Introduction

The goal of our project is to use reinforcement learning
to play a simple game from a CS 31 assignment called Bad
Bunny. In this game, the player is in a grid arena along with
a number of randomly placed “killer rabbits.” In each time
step, the player can move one square in each of the four
directions or drop a “poisoned carrot” on the current square
(dropping a poisoned carrot onto a square that already has
a poisoned carrot has no effect). After the player makes a
move, each of the rabbits will move one square in a random
direction. If a rabbit moves onto the square where the player
is, the player loses. If a rabbit moves onto a square with a
poisoned carrot, the rabbit eats the poisoned carrot and dies.
The player wins if all rabbits die. For our experiments, we
set the game’s grid size to 16× 16 and the initial number of
rabbits at the start of each game to 16. A screenshot of the
game is shown in Fig. 1.

We chose this game because although its mechanics are
simple, playing it optimally is nontrivial. The player has
to avoid being killed by a rabbit while also placing carrots
near the rabbits so that the rabbits die as soon as possible.
A simple strategy would be to stay away from rabbits, place
carrots when possible, and wait for the rabbits to wander
into the carrots. A more sophisticated strategy might in-
volve distributing the carrots around the arena to increase
the chances of rabbits eating them or surrounding rabbits
with carrots.

The observation given to the model consists of three
matrices with the same size as the arena stacked together,
where the entries in the matrices correspond to grid squares.

The first matrix encodes the position of the player. It has a 1
where the player is and 0 everywhere else. The second ma-
trix indicates whether there is a carrot at each grid square,
with a value of 1 at squares with carrots and 0 at squares
without carrots. The third matrix indicates the positions
of the rabbits, with a 1 at squares with at least one rabbit
and 0 at squares with no rabbits. Note that the observation
does not contain enough information to determine the en-
tire game state because there can be multiple rabbits on the
same square. However, this doesn’t happen often and is un-
likely to affect performance so we did not use RNN policies
or frame stacking.

We experimented with training models using deep Q-
networks (DQN) [2] and proximal policy optimization
(PPO) [5]. We used model architectures consisting of con-
volutional layers with batch normalization and max-pooling
followed by fully connected layers.

2. Results

We measured the performance of our models by their win
rate, which is the proportion of games played that end in a
win. Detailed results are shown in Tab. 1. We were not able
to achieve good results using PPO, so we will focus on the
results that we obtained with DQN.

Our best model achieved a win rate of 0.87 using DQN

Figure 1. A screenshot showing our implementation of the Bad
Bunny game. The player is represented by a green circle and white
circles represent rabbits. Orange squares represent squares with
poisoned carrots. Note that this graphical rendering is only used
to visualize the game for humans. The model uses a different sim-
plified representation.



Figure 2. A graph of the training progress for the the best model.
The horizontal axis is the number of training time steps and the
vertical axis is the mean reward. This model was trained using
reward function 1 described in Appendix B.1.1.

and dense rewards that explicitly encouraged the agent to
drop carrots, kill rabbits, and avoid being next to rabbits.
The network uses three convolutional layers with 3× 3 ker-
nels and 2 × 2 max-pooling after each layer, followed by
four fully-connected layers. Details are explained in Ap-
pendix B (the model was trained with reward function 1 de-
scribed in Appendix B.1.1 and uses feature extractor 3 de-
scribed in Appendix B.2.3). A graph of the model’s rewards
during training is shown in Fig. 2. Videos of the model play-
ing the game show that the model efficiently places a large
number of carrots throughout the arena while not getting
too close to rabbits. Another model achieved a win rate of
0.86 and used a similar network architecture but without the
third convolutional layer.

We found that the biggest factor in the performance of
the models was the reward. Adding a negative reward for
being next to a rabbit greatly increased the model’s perfor-
mance, as shown in Fig. 3. When we experimented with
removing the penalty in reward functions 2 and 3 described
in Appendix B.1.2 and Appendix B.1.3 respectively, the re-
sulting models performed poorly. We found that a carefully-
designed reward function is essential for helping the model
learn.

When we tried incentivizing faster wins with re-
ward function 4 described in Appendix B.1.4, the win
rate of the model slightly decreased over time, but
the mean episode length also decreased indicating that
the model is more aggressive as we expected. A
graph of the mean episode length is in Fig. 4 and
a video of this model playing the game is avail-
able at https://drive.google.com/file/d/
1e4cjUZfSVIa9iybIe581DrZYg319GSD5/view?
usp=sharing. Note that because the player moves first
in each time step, it is safe for the player to be next to a
rabbit as long as they move to a square not adjacent to any
rabbits in the next time step.

Figure 3. A graph comparing mean reward during training with
and without a negative reward penalty for being next to a rabbit.
The horizontal axis is the number of training time steps and the
vertical axis is the mean reward. The blue line shows a model
being trained without the penalty, and the pink line shows a model
being trained with the penalty. Note that with the penalty, the mean
reward is initially lower since the penalty decreases the reward, but
the mean reward quickly increases and surpasses the mean reward
without the penalty.

Figure 4. A graph of the mean episode length for the model trained
with a reward that incentivizes faster wins. The horizontal axis is
the number of training time steps and the vertical axis is the mean
episode length. The glitch in the middle is due to a mistake that
caused some extra data to be written to the logs.

3. Discussion
3.1. Reward Engineering

Achieving the results that we got required dense rewards
that incorporated human knowledge of how to play the
game well. The model performs poorly if it is only given
a positive reward for winning and a negative reward for
losing. This reflects one of the major limitations of cur-
rent reinforcement learning algorithms, and well-designed
rewards are often necessary for good performance in other
environments [1].

There are likely several reasons why learning with sparse
rewards is extremely difficult in our environment: First, an
untrained model has a very low chance of winning the game,
since this requires effectively avoiding rabbits to stay alive
while dropping enough carrots to kill the rabbits. If the only
rewards were for losing and winning, the model will never
get the winning reward. Learning is difficult even with a
reward for killing each rabbit due to the random nature of
the game. In order to kill a rabbit, the player must drop a
carrot and then wait for a rabbit to randomly wander to the
square with the carrot. This can take many time steps, and
the player has to stay alive in the meantime. Dropping a

https://drive.google.com/file/d/1e4cjUZfSVIa9iybIe581DrZYg319GSD5/view?usp=sharing
https://drive.google.com/file/d/1e4cjUZfSVIa9iybIe581DrZYg319GSD5/view?usp=sharing
https://drive.google.com/file/d/1e4cjUZfSVIa9iybIe581DrZYg319GSD5/view?usp=sharing


carrot only changes the expected reward by a small amount,
but the reward has very high variance due to the random
movement of the rabbits. These factors make it challeng-
ing for the model to learn the association between dropping
carrots and killing rabbits. The small reward for dropping
carrots was effective because it was deterministic and given
immediately after the action that we are trying to encourage.

We were disappointed in the fact that we could not make
the model learn to avoid rabbits without an explicit penalty
for being next to a rabbit. This might be because the model
initially loses almost every game, so the Q-network learns
to always predict a large negative reward. If the player is
next to a rabbit, there is a 25% chance of a large negative
reward in the next time step, but the network predicts that
there will always be a large negative reward eventually so
there is little reason for the player avoid being next to the
rabbit.

3.2. Model Architecture

Our best-performing models used two or three convolu-
tional layers with max-pooling after each layer. One pos-
sible reason why these architectures performed well is the
shift invariance property of the max-pooling layer. Playing
the game well requires the model to pay attention to things
near the player, and the absolute position of the player in the
arena is less important. For example, regardless of where
the player is, if there is a rabbit on the left side of the player,
the player should move up, down, or to the right. Using
several max-pooling layers makes it easy for the network to
detect certain patterns regardless of where they occur in the
arena.

3.3. Stalling Behavior

One issue that we noticed with some of the models that
performed well was that when there are few rabbits left, the
player would sometimes stay in one square for a large num-
ber of moves. This doesn’t affect the win rate much since
the player is a safe distance away from the rabbits and the
rabbits would eventually wander into carrots, but ideally we
would like to see our model win as fast as possible. This
might be happening even though there is a reward for drop-
ping carrots because the model is not sensitive to things far
away from the player. If the player happens to not move in
one time step, the changes in the observation will be small
and far away from the player’s position. The model’s output
will therefore only change by a small amount, so the player
is likely to continue staying still. Another potential factor is
that during training, the ε-greedy policy chooses a random
action with a probability of 0.05, but during evaluation, the
action with the best predicted value is always chosen. The
random actions might prevent the stalling behavior from oc-
curring during training.

We tried to fix this issue by using a decaying win re-

ward that incentivized faster wins, and it appeared to have
some effect but the model still occasionally stalls. Another
potential way to disincentivize stalling and decrease the win
time is adding rewards for exploration. This could be imple-
mented by storing a least-recently visited cache of positions
visited and increasing the reward on eviction.

References
[1] Alex Irpan. Deep reinforcement learning doesn’t work yet.

https://www.alexirpan.com/2018/02/14/rl-
hard.html, 2018. 2

[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves,
Martin Riedmiller, Andreas K. Fidjeland, Georg Ostro-
vski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wier-
stra, Shane Legg, and Demis Hassabis. Human-level control
through deep reinforcement learning. Nature, 518(7540):529–
533, Feb. 2015. 1

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imper-
ative Style, High-Performance Deep Learning Library. In H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E.
Fox, and R. Garnett, editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates,
Inc., 2019. 5

[4] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto,
Maximilian Ernestus, and Noah Dormann. Stable-baselines3:
Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. 5

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms, 2017. 1

[6] Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U.
Balis, Gianluca de Cola, Tristan Deleu, Manuel Goulão,
Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo
Perez-Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai,
Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, Mar.
2023. 5

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html


A. Detailed Results
Tab. 1 lists the win rates for each experiment.

Algorithm Feature extractor Reward function Other variations Number of time steps Win rate
DQN 3 1 4× 105 0.87
DQN 2 1 5× 105 0.86
DQN 2 1 5× 105 0.85
DQN 3 1 4× 105 0.84
DQN 3 4 5× 105 0.83
DQN 1 1 5× 105 0.65
DQN 3 1 50000 buffer size 2× 105 0.25
DQN 1 3 2× 105 0.07
DQN 1 2 3× 105 0.05
PPO 1 1 1× 105 0
PPO 1 1 2× 105 0

Table 1. Table showing the results of each experiment. We stopped each trial when the model was no longer improving or when the
performance was not better than other trials. Win rates were calculated from 100 games.

Hyperparameter Value
Learning rate 10−4

Replay buffer size 106

Number of steps before learning starts 100
Batch size 32
Soft update coefficient 1
Discount factor 0.99
Number of time steps per update 4
Number of gradient steps per iteration 1
Target network update interval 104

Exploration rate 0.05
Maximum gradient norm 10

Table 2. DQN hyperparameters.

Hyperparameter Value
Number of parallel environments 8
Learning rate 3× 10−4

Number of time steps per update 128
Batch size 64
Number of epochs 10
Discount factor 0.99
GAE parameter 0.95
Clipping parameter 0.2
Entropy coefficient 0
VF coefficient 0.5
Maximum gradient norm 0.5

Table 3. PPO hyperparameters.



B. Methods
We implemented the Bad Bunny game in Python with the

Gymnasium API [6], and we used implementations of DQN
and PPO from Stable Baselines3 [4]. We used PyTorch [3]
to implement our models.

B.1. Rewards

Besides a large negative reward for losing and a large
positive reward for winning, we used several supplemen-
tal rewards to help the model learn. We gave the model a
positive reward whenever a rabbit dies, and we also gave a
small positive reward to the model for dropping a carrot on
a square that doesn’t already have a carrot. In some exper-
iments, we gave the model a negative reward for making a
move that results in it being next to a rabbit. The follow-
ing sections describe the reward functions that we used in
detail.

B.1.1 Reward Function 1

This function gives a reward of −100 for losing, 100 for
winning, 1 for dropping a carrot, 10 for killing a rabbit and
−5 for being next to a rabbit. The negative reward for being
next to rabbits is calculated after the player moves and be-
fore the rabbits move so that it penalizes risky actions that
result in the possibility of losing in the next time step.

B.1.2 Reward Function 2

Reward function 2 is the same as reward function 1, ex-
cept that the negative reward for being next to a rabbit is
removed.

B.1.3 Reward Function 3

Reward function 3 replaces the negative reward for being
next to a rabbit in reward function 1 with a linearly decreas-
ing positive reward in the first 100 time steps to encourage
survival. The additional reward at each time step is given by
the following formula, where t is the number of time steps
since the start of the current episode:

turn_reward(t) =

{
1− t

100 t ≤ 100

0 t > 100

B.1.4 Reward Function 4

Reward function 4 is the same as reward function 1 except
that the win reward decays during each episode. The reward
for winning is given by the following formula, where t is the
number of time steps in the episode:

win_reward(t) = 75 + 200× 0.99t

This reward was designed to prevent stalling by incentiviz-
ing faster wins.

B.2. Model Architectures

Our models consisted of CNN feature extractors fol-
lowed by fully-connected networks. The feature extractors
are described in the following sections. For DQN, the Q-
network consist of the feature extractor, two hidden layers
each with 64 units, and an output layer with 5 units, one
for each possible action. The hidden layers use ReLU ac-
tivation. For PPO, the policy and value networks share the
feature extractor and each have two hidden layers with 64
units and ReLU activation. The policy network has an out-
put layer with 5 units and the value network has an output
layer with a single unit.

B.2.1 Feature Extractor 1

Feature extractor 1 has two convolutional layers and one
fully-connected layer. The convolutional layers each have
32 filters with a kernel size of 3 × 3, stride 1, and padding
1. The fully-connected layer has 256 units. Batch normal-
ization and ReLU activation is applied after each layer.

B.2.2 Feature Extractor 2

Feature extractor 2 also has two convolutional layers and
one fully-connected layer. The first layer has 32 filters and
the second layer has 64 filters. Both layers use 3 × 3 ker-
nels and are followed by batch normalization, ReLU activa-
tion, and 2× 2 max-pooling. The fully-connected layer has
256 units, batch normalization, and ReLU activation like
the baseline feature extractor.

B.2.3 Feature Extractor 3

Feature extractor 3 is similar to feature extractor 2, but it has
a third convolutional layer with 128 filters and 3×3 kernels
before the fully-connected layer. The additional layer also
has batch normalization, ReLU activation, and 2 × 2 max-
pooling.

B.3. Other Hyperparameters

Due to time limitations, we were only able to tune some
of the many hyperparameters that RL algorithms have. We
used default values for the other hyperparameters shown in
Tab. 2 and Tab. 3. We used the Adam optimizer for all ex-
periments.


	. Introduction
	. Results
	. Discussion
	. Reward Engineering
	. Model Architecture
	. Stalling Behavior

	. Detailed Results
	. Methods
	. Rewards
	Reward Function 1
	Reward Function 2
	Reward Function 3
	Reward Function 4

	. Model Architectures
	Feature Extractor 1
	Feature Extractor 2
	Feature Extractor 3

	. Other Hyperparameters


