
Digitr Technical Whitepaper of 1 7

Digitr
Technical Whitepaper

Omar Elamri 

Digitr Technical Whitepaper of 2 7

1 Introduction

1.1 What is Digitr?
Digitr is a digital student hallway pass app that provides a smart, simple, scalable and
convenient way of managing student passes. Used by over 100 schools across the
nation, Digitr keeps students safe and accountable by having them electronically check
in with their teacher before leaving the classroom. Once they come back to the
classroom, they electronically check in again—ensuring that teachers and
administrators know where students are at all times. This is especially tantamount to
contact tracing during the COVID-19 pandemic.

1.2 History of Digitr
6 years ago, my STEM teacher came up to me and asked if I could make an app to
replace their system of paper hall passes. Of course, I accepted and was very excited
to start working. The "zeroth" version of Digitr (then called mPass) was an extremely
rudimentary app created in Android App Studio. My teacher was excited, but clearly
we'd need something more robust. I decided to take online lessons in iOS App
Development and Python in hopes my new skills would be able to create the app.

After completing those lessons, I created the first version of Digitr with the help of one
of my classmates. It was based on iOS's UIKit and used the Python library Flask as the
backend. There were a lot of problems with this first design. Firstly, it didn't integrate
with our school's system, so students would have to create their own accounts.
Unfortunately, students never remember their passwords. Secondly, our Flask
implementation was incredibly amateurish. Every request was an HTTP GET request
with passwords being passed around in plaintext.

With these obvious drawbacks, I created the second version of Digitr. For the backend,
I used Google's Firebase platform as a backend. This version is the first to not use
Apple's UIKit, but instead the Ionic Framework (Angular based). There were some clear
advantages to this new version—the main one being that it was available on every
device since Angular uses web technologies. In addition, students could log in via
Google. The main drawback, however, was the fact you could easily manipulate the
app. The frontend took care of all the database logic, so a simple inspect element
could easily change any value. Clearly, a new solution was needed.

I then created the third and current version of Digitr which addressed all these issues. A
discussion about this version's use of technology can be found below.

Digitr Technical Whitepaper of 3 7

2 Technology Overview

2.1 Diagram

2.2 Backend

• Google Cloud Platform

The backend server is hosted using Google Cloud Platform's (GCP) Compute Engine.
GCP creates a Debian 9 virtual machine under a scalable x86 Intel server. GCP also
provides a static IP address.

• pm2

pm2 is a process manager for Node.js applications. It creates a Linux daemon that the
VM runs on start and automatically restarts in the case of a crash. In addition, it
provides the ability to split the TCP connections between multiple threads, and gives
telemetry options for system monitoring.

PayPal

Node.js

pm2

Google Cloud Platform:

Compute Engine VM

MongoDB

Let's
Encrypt

Google
Sign-In

Cloudflare

Ionic Framework

Angular

Cordova

GitHub
Pages

WebSockets

Backend

Frontend

Digitr Technical Whitepaper of 4 7

• Node.js

Node.js is a framework for developing server side applications using JavaScript. Under
the hood, it uses Google Chrome's V8 engine for its interpreter. This implementation of
Node.js has a TypeScript transpiler to convert ES6 TypeScript to ES3 JavaScript.

This application's source code is comprised of two main files: main.ts and
responder.ts. The former file is the entry point for the application. It instantiates
connection with the MongoDB database, creates the HTTPS server with the certificate
files from Let's Encrypt, and finally listens for WebSocket connections and passes it on
to a responder object. responder.ts houses the responder object. Based on
the body of the WebSocket frame, it looks for a designated function to craft a response
to the client. Some responses are a "subscription" to a document, so any changes will
be sent for the duration of the connection.

• Let's Encrypt

Let's Encrypt manages the retrieval and renewal of SSL certificates for the application.

• PayPal

PayPal is the application's payment vendor. There is an upgraded version of Digitr
called Digitr Analytics. That is not free, and thus needs a payment vendor to handle
payments. PayPal is integrated with the app via its REST API. An invoice is created
programmatically, and PayPal sends a redirect URL, which is relayed to the frontend to
complete the payment.

• Cloudflare

Cloudflare provides the DNS nameservers for the domain digitrapp.com. It also
prevents DDOS attacks by proxying all requests to the backend in addition to enforcing
HTTPS and HSTS.

• Google Sign-In

After the frontend has initiated a sign-in request, it will relay a sign-in token to the
backend. Using Google's JSON Web Token verifier, the backend can verify the user is
indeed the person they claim to be and can extract information such as the name,
email, and profile picture from the token.

• WebSockets

WebSockets is a protocol that runs on top of HTTPS. To initiate a WebSocket
connection, the client sends an HTTP request to upgrade the connection. A handshake
occurs, and the TCP connection stays alive for the entirety of the client's session.

Digitr Technical Whitepaper of 5 7

Frames can be sent back and forth without the need of creating a new TCP session.
This makes WebSockets particularly useful for realtime communication. All the
communication between the frontend and the backend happens over WebSockets.

2.3 Frontend

• Ionic Framework

This framework provides prebuilt UI elements to look like an iOS app while using web
technologies like Angular. It also provides a command-line interface to build the app for
production, export it to Cordova, or update packages.

• Angular

Angular is a JavaScript framework that provides structure and organization to a large
application. Built-in elements such as Routers map URLs to Angular components, and
services that provided packaged functionality. Digitr utilizes Angular by separating each
page of the app into components and putting backend server connection into its own
service.

The backend server connection code Digitr uses is fairly complicated to ensure
network interruptions don't affect requests made to the server. Any request that goes
out to the server is cached in an array. Once a response is received, that request is
popped off the array. If the app detects a change in network connection, it will
reconnect to the backend server and send the request. This ensures that every request
is eventually sent out—and only one time.

• Cordova

Cordova packages an Angular website into an iOS application. Most times, it's just as
simple as putting the website on a WebKit WebView, but sometimes, it's necessary to
communicate with native binaries. For example, the Google Sign-In prompt is a native
binary. Cordova bridges the Angular code with iOS Swift code to ensure a seamless
experience.

• GitHub Pages

GitHub Pages acts as a CDN that hosts the web version of Digitr at app.digitrapp.com.

• Google Sign-In

Digitr Technical Whitepaper of 6 7

This library serves as Digitr's primary authentication method. GSI provides a simple
button that users can click, which redirects them to Google's sign in page. After they
sign in, GSI gives the app an authentication token, which the backend can verify.

2.4 Backend-Frontend Communication

WebSockets affords Digitr a seamless way to provide real-time communication to the
end user. A typical WebSockets request lifecycle may look like this:

2.4.1 Typical Lifecycle Diagram

2.4.2 Typical Lifecycle Step by Step Process

1. A user clicks sign in.

2. The signIn() function will:

1. Get an authentication token from Google Sign-In after redirecting the user to a
Google sign-in page.

2. Call requestSignIn().

3. The requestSignIn() will add a request to an Outbound Requests cache array,

which includes a pointer to the originating signIn() function. The reasoning for
this array is highlighted in section 2.3

WebSockets
User signIn() requestSignIn()

Google
Sign-In

handleSignIn()

MongoDB

handleResponse()

Outbound Requests

- request1

- request2

- requestN

Clicks sign in

Get token

Add to requests

Verify token Get user

WebSockets

Find request

Success

Digitr Technical Whitepaper of 7 7

4. A WebSockets frame is sent to the backend handleSignIn() function, which
will

1. Verify the token sent from the frontend with Google Sign-In

2. Get the user data from the MongoDB database.

3. Step 2 will be repeated once it detects changes to the user object. Each

repetition implies repetition of the subsequent steps.

4. Send the user object back to the handleResponse() function of the frontend

via a WebSockets frame.

5. handleResponse() will find a request in the Outbound Requests cache array,

and call the pointer to the signIn() function with the user data.

6. The signIn() function will move on to the main application on successful

response.

	1 Introduction
	2 Technology Overview

