
Formal Verification of Compiled
Binaries
Jason An - jasan@ucla.edu
Alexander Zhang - alexyz@ucla.edu
Omar Elamri - omarelamri@ucla.edu

Abstract
Formal verification provides a high level of assurance but comes with many drawbacks such
as tooling, complex semantics, and lots of manual work. We perform formal verification on
compiled binaries instead—using angr and the z3 SMT solver. Our verifier aims to detect
vulnerabilities, verify correctness, support multiple architectures, and provide
cross-language support. Results are promising—we are able to verify programs that
implement simple integer operations with branches on both x86 and ARM, verify programs
that use external library calls to read from standard input and catch a simple buffer
overflow. Other works exist; however, they are fairly limited in scope—either being limited
to x86 and/or needing manual lifting in order to work.

Introduction
Formal verification provides a very high level of assurance, but it is not commonly used
because it is difficult to implement. Formal verification has previously been performed on
source code, but this has several drawbacks. First, formally verifying source code is
inherently language-dependent. Tooling needs to be customized for each programming
language, and verifying programs written in multiple languages such a C and Rust is
difficult. Second, programming languages tend to have complex semantics. Manual work is
needed to properly model the program, and mistakes can undermine the results of the
verification. In our project, we attempt to perform formal verification on compiled binaries
using the angr concolic execution engine. We first concolically execute the binary with
angr, then run the z3 SMT solver on the symbolic results and user-inputted invariants to
prove the program's correctness. We aim to create a verifier that can detect vulnerabilities
and verify correctness with support for multiple architectures and programming languages.

mailto:jasan@ucla.edu
mailto:alexyz@ucla.edu
mailto:omarelamri@ucla.edu
https://angr.io/

Project Goals & Timelines
This project has four primary goals.

1. Detecting vulnerabilities such as buffer overflows: As buffer overflows are a fairly
common vulnerability, being able to find these would reduce attack vectors
substantially.

2. Verifying output correctness: A common way to “verify” correctness is to use unit
tests that check for specific values. However, unit tests are only as expansive and
thorough as their writer. Using a symbolic execution engine will find paths
potentially not found by unit testing.

3. Support for multiple architectures: The aim is to provide a general verification
system—not one tied specifically to x86, ARM, or RISC-V.

4. Cross-language support: By formally verifying the binary and not the source code,
this project can verify programs language-agnostically—not needing to work with
each language’s intricacies (subject to ABI complexity).

As this project is fairly complicated, there are multiple goals that we set out to complete. To
date, the following are completed:

● Verification of simple integer computations
● A simple-to-use but flexible API to interact with the verifier
● Verification of programs utilizing library calls and standard input
● Verification of return address preservation to catch buffer overflows
● Verification of multiple programming languages, including C and Rust
● Verification of multiple architectures, including x86 and ARM

In the future, we may look towards:
● Verification of floating-point computations
● Detection of out-of-bounds memory operations not just restricted to the saved

return address of the function

Results

Integer Operations
We started by implementing a verifier for simple functions that take an integer argument
and return an integer value computed from the argument. We used the following functions
for testing:

int div2good(int x) { return x / 2; }

int div2good2(int x) { return (x + ((x >> 31) & 1)) >> 1; }
int div2bad(int x) { return x >> 1; }
int div2contrived(int x) {

if (x == 0x13371337) {
return x / 2 + 1;

} else {
return x / 2;

}
}

These functions are all supposed to divide their argument by 2 and return the truncated
quotient. The div2good function does so using the C division operator, while the
div2good2 function uses bitwise operations. The div2bad function uses a single-bit shift,
which works for nonnegative numbers but returns the wrong value for negative numbers
since it does not truncate properly. The div2contrived function divides using the C
division operator like div2good, but if the argument is 0x13371337 it adds one to the
resulting value.

We compiled the C code using GCC, then we ran our verifier on the functions with a
constraint requiring the return value to be equal to the argument divided by 2. The verifier
successfully verified div2good and div2good2 and found counterexamples for div2bad
and div2contrived:

Successfully verified rule __main__.rule_div2 for div2good
Successfully verified rule __main__.rule_div2 for div2good2
Failed verifying rule __main__.rule_div2 for div2bad (constraints
correct): arguments [-0x3918791d] return -0x1c8c3c8f
Failed verifying rule __main__.rule_div2 for div2contrived
(constraints correct): arguments [0x13371337] return 0x99b899c

Note that our verifier alerts the user of exactly which constraint was not satisfied.

We also tested our verifier on functions containing loops, which can't be easily verified with
normal symbolic execution unlike the division functions:

int triangularNum(int n) {
if (n > 100) {

return -1;
}
int sum = 0;
for (int i = 0; i < n; i ++) {

sum += i;

}
return sum;

}

int triangularNumBad(int n) {
if (n > 100) {

return -1;
}
char sum = 0;
for (int i = 0; i < n; i ++) {

sum += i;
}
return sum;

}

These functions compute triangular numbers using a simple for loop. The
triangularNumBad function uses a char instead of an int to store the sum, resulting in
overflows for larger values of n. The verifier successfully verifies triangularNum and finds
many counterexamples for triangularNumBad:

Successfully verified rule __main__.rule_trinum for triangularNum
Failed verifying rule __main__.rule_trinum for triangularNumBad
(constraints correct): arguments [0x11] return -0x78
Failed verifying rule __main__.rule_trinum for triangularNumBad
(constraints correct): arguments [0x12] return -0x67
Failed verifying rule __main__.rule_trinum for triangularNumBad
(constraints correct): arguments [0x13] return -0x55
...

These results show that our verifier is capable of verifying code containing arithmetic and
logical operations as well as control constructs like if statements and loops.

Standard Input, Library Calls, and Buffer Overflows

Our verifier is also able to interface with standard input and work with library calls. Here’s a
toy example that uses libc’s read function:

int testStdin() {

signed char num;

read(0, &num, 1);

return num / 2;

}

int testStdinBad() {

signed char num;

read(0, &num, 1);

return (num / 2) + 1;

}

The first function reads in a byte from standard in and places it in the num buffer. It returns
the byte divided by two—similar to div2good but retrieves its input elsewhere. The second
function performs the same operation but adds + 1 to make it incorrect. Our verifier
should verify that the first function does divide by two, and the second one should fail:

Successfully verified rule rule_stdin for testStdin

Failed verifying rule rule_stdin for testStdinBad (constraints by2):
arguments [] stdin 0xff000[...] return 0x1

With the addition of standard in as a constraint, our verifier is much more flexible. We’ll use
this functionality to detect a buffer overflow originating from an extended read. To detect
a buffer overflow, our verifier stores the return address before emulating execution. After
execution, it compares the current return address and fails to verify if they differ.

int testStdinBof() {

signed char num;

read(0, &num, 64);

return num / 2;

}

This function works similarly to the other two, but now reads in a maximum of 64 bytes.
Since our num buffer is only 1 byte long, our verifier should fail on a longer input:

Failed verifying rule rule_stdin for testStdinBof (constraints
preserves return address): arguments [] stdin
0x01000000000000000038007f0[...] return 0x0

When passing in an especially large value to standard input, the return address is
overwritten, and our verifier catches it.

Cross-language, cross-architecture support

Our verifier works across languages and architectures. In the next example, we use an
executable that interfaces with a Rust library—all compiled for aarch64.

Take this toy example of a Rust library:

use std::ffi::c_int;

#[no_mangle]

pub extern "C" fn is_negative(x: c_int) -> c_int { (x >> 31) & 1 }

#[no_mangle]

pub extern "C" fn is_negative_bad(x: c_int) -> c_int { (x >> 31) & 2 }

We have two functions that detect if a number is negative—the second one fails since it
doesn’t check the signed bit. Now, take an executable that interfaces with these Rust
functions:

int is_negative(int x);

int is_negative_bad(int x);

int div2rustgood(int x) { return (x + is_negative(x)) >> 1; }

int div2rustbad(int x) { return (x + is_negative_bad(x)) >> 1; }

Our verifier should verify the third function and fail on the fourth function since it uses the
correct and incorrect is_negative functions respectively.

Successfully verified rule aarch64_rule_div2 for div2rustgood

Failed verifying rule aarch64_rule_div2 for div2rustbad (constraints
correct): arguments [-0x4745a800] return -0x23a2d3ff

Our verifier caught the issue—in a language other than C and an architecture other than
x86.

Limitations
Our verifier works on a wide variety of software features; however, there are clear
limitations. For example, it doesn’t work on more complicated library functions—functions
that used libc’s fgets failed to verify no matter the function body. In addition, while our
verifier mostly works cross-architecture, return address semantics differ for each
architecture. Hence, those are cases we’d need to handle manually.

Other limitations have to do with our toolchain. angr, which uses concolic execution, is
susceptible to state explosion if branching is especially complex in a function. angr and z3
are not fully modeled theorem provers, unlike ACL2 and coq. However, our solution is
simple and extensible to many scenarios—providing an API that specializes in flexibility and
that is “turn-key” to fit many needs.

Related Works
Many works exist that attempt to verify compiled binaries formally. However, they’re
particularly limited in scope.

In Bockenek et. al.’s [1] paper on Formal Verification of Memory Preservation of x86-64
Binaries, they attempt to verify language agnostically (like this project) by verifying the
compiled binaries. As a limiting factor, they only focus on memory preservation instead of
general verification. This requires proving “the absence of common memory-related issues,
such as buffer overflows or some forms of data leakage” (Bockenek, 2019). They do this by
studying the x86-64 ISA and developing invariants that memory accesses/writes may not
violate. While this has the advantage of potentially preventing buffer overflows, this
approach is inherently tied to x86-64—where architecture invariance is one of our goals. It
also checks only a small subset of program correctness relating to memory correctness,
without verifying that the program behaves correctly too.

In Goel et. al.’s [2] paper on the simulation of x86 programs that make system calls, they
approach the issue of nondeterminism by separating their analysis into logical and
execution modes. In the logical mode, all x86 logic is pure where any external state is
modeled as a changing environment variable. The major drawback of this solution is that
it’s limited to x86 (as is the previous solution) and that it needs to “lift” the program into
another HOL solver (Goel, 2014).

In Goel's [3] later thesis defense, they discuss a newer verifier they've been working on
which models the entire x86 pipeline including instruction fetching, decoding, and
executing in ACL2. This is much more powerful than the previous HOL solver, and also no
longer needs an external lifting script to function properly.

Other methods of verification don’t meet this project’s needs. This project’s verification
method is fairly simple and supports a wide variety of applications and environments. It
may not be as encompassing or powerful as the x86-specific solver, but it's much easier to
work with and use with other operating systems or architectures.

References
[1] JA. Bockenek, F. Verbeek, P. Lammich, and B. Ravindran. “Formal Verification of Memory
Preservation of x86-64 Binaries,” 2019 Computer Safety, Reliability, and Security: 38th
International Conference, SAFECOMP 2019, Turku, Finland, September 11–13, 2019,
Proceedings. Springer-Verlag, Berlin, Heidelberg, pp. 35–49, doi:
https://doi.org/10.1007/978-3-030-26601-1_3

[2] S. Goel, W. A. Hunt, M. Kaufmann and S. Ghosh, "Simulation and formal verification of
x86 machine-code programs that make system calls," 2014 Formal Methods in
Computer-Aided Design (FMCAD), Lausanne, Switzerland, 2014, pp. 91-98, doi:
https://doi.org/10.1109/FMCAD.2014.6987600

[3] Goel, S. (2016). Computer Architecture and Program Analysis Formal Verification of x86
Machine-Code Programs. https://www.cs.utexas.edu/~byoung/cs429/shilpi-slides.pdf

https://doi.org/10.1007/978-3-030-26601-1_3
https://doi.org/10.1007/978-3-030-26601-1_3
https://www.cs.utexas.edu/~byoung/cs429/shilpi-slides.pdf

